Page 163 - Contributed Paper Session (CPS) - Volume 2
P. 163

CPS1488 Willem van den B. et al.
            5.  Furrer, R., M. G. Genton, and D. Nychka (2006). Covariance tapering for
                 interpolation of large spatial datasets. Journal of Computational and
                 Graphical Statistics 15(3), 502–523.
            6.  Gehre, M. and B. Jin (2014). Expectation propagation for nonlinear
                 inverse problems – with an application to electrical impedance
                 tomography. Journal of Computational Physics 259, 513–535.
            7.  Gelman, A., A. Vehtari, P. Jyl¨anki, C. Robert, N. Chopin, and J. P.
                 Cunningham (2014). Expectation propagation as a way of life.
                 arXiv:1412.4869v3.
            8.  Gianniotis, N. (2019). Mixed variational inference. arXiv:1901.04791v1.
            9.  Kaipio, J. and E. Somersalo (2005). Statistical and Computational Inverse
                 Problems. Springer-Verlag.
            10.  Minka, T. P. (2001). Expectation propagation for approximate Bayesian
                 inference. In Proceedings of the Seventeenth Conference on Uncertainty
                 in Artificial Intelligence, pp. 362–369.
            11.  Reid, A., S. O’Callaghan, E. V. Bonilla, L. McCalman, T. Rawling, and F.
                 Ramos (2013). Bayesian joint inversions for the exploration of earth
                 resources. In Proceedings of the Twenty-Third International Joint
                 Conference on Artificial Intelligence, pp. 2877–2884.
            12.  Steinberg, D. M. and E. V. Bonilla (2014). Extended and unscented
                 Gaussian processes. In Advances in Neural Information Processing
                 Systems 27, pp. 1251–1259.



































                                                               152 | I S I   W S C   2 0 1 9
   158   159   160   161   162   163   164   165   166   167   168