Page 18 - Contributed Paper Session (CPS) - Volume 3
P. 18

CPS1923 Deemat C M. et al.
                                Table 6. Empirical Power: Makeham distribution
                          = 0.2          = 0.4          = 0.6           = 0.8
                         5%      1%       5%       1%      5%       1%       5%      1%
                       level   level    level    level   level    level    level   level
                   60    0.37    0.14     0.49     0.22    o.65     0.36     0.87    0.63
                   70    0.42    0.17     0.55     0.26    o.72     0.43     0.92    0.72
                   80    0.46    0.20     0.60     0.31    0.78     0.49     0.94    0.79
                   100  0.55     0.27     0.70     0.40    0.86     0.62     0.98    0.90

                  References
                  1.  Box, G. E. P. (1954). Some theorems on quadratic forms applied in the
                      study of analysis of variance problems, I. Effect of inequality of variance in
                      the one-way classification, Annals of Mathematical Statistics, 25, 290-302.
                  2.  Chen, Y.Y., Hollander, M. and Langberg, N.A. (1983). Tests for monotone
                      mean residual life, using randomly censored data, Biometrika, 39, 119-
                      127.
                  3.  Glynn, P.W. and Whitt, W. (1993). Limit theorems for cumulative processes,
                      Stochastic Processes and their Applications, 47, 299-314
                  4.  Hollander, M., Proschan, F., (1975). Tests for mean residual life, Biometrika,
                      62, 585-593.
                  5.  Henze,  N.  and  Meintanis,  S.G.  (2005).  Recent  and  classical  tests  for
                      exponentiality: a partial review with comparisons, Metrika, 61, 29-45.
                  6.  Kayid, M., Ahmad, I.A., Izadkhah S. and Abouammoh, A.M. (2013). Further
                      results involving the mean time to failure order, and the decreasing mean
                      time to failure class, IEEE Transactions on Reliability, 62, 670-678.
                  7.  Lee, A.J. (1990). U-Statistics, Marcel Dekker Inc., New York.
                  8.  Lehmann,  E.L.  (1951).  Consistency  and  unbiasedness  of  certain
                      nonparametric tests, Annals of Mathematical Statistics, 22, 165-179.
                  9.  Li,  X  and  Xu,  M.  (2008).  Reversed  hazard  rate  order  of  equilibrium
                      distributions and a related ageing notion, Statistical Papers, 49,749-767.
                  10.  Proschan, F. (1963). Theoretical explanation of observed decreasing failure
                      rate. Technometrics, 5, 375-383.
                  11.  Roginsky, A.L (1994). A central limit theorem for cumulative processes,
                      Advances in Applied Probability, 26, 104-121.
                  12.  Sepehrifar, M.B, Khorshidian, K. and Jamshidian, A.R. (2015). On renewal
                      increasing  mean  residual  life  distributions:  An  age  replacement  model
                      with hypothesis testing application, Statistics and Probability, 96, 117-122.










                                                                       7 | I S I   W S C   2 0 1 9
   13   14   15   16   17   18   19   20   21   22   23