Page 211 - Contributed Paper Session (CPS) - Volume 4
P. 211

CPS2182 Lynne Billard et al.






















            3.  Conclusion
                We  have  introduced  a  new -regressions  algorithm  and  shown  that  it
            works better than does the traditional  -means algorithm on interval valued
            data. More details can be found in Liu (2016).

            References
            1.  Billard, L. (2008). Sample covariance functions for complex quantitative
                 data. In: Proceedings World Congress, International Association of
                 Statistical Computing (eds. M. Mizuta and J. Nakano) Japanese Society of
                 Computational Statistics, Japan, p. 157-163.
            2.  Charles, C. (1977). Regression Typologique et Reconnaissance des
                 Formes. These de 3eme cycle, Universite de Paris, Dauphine.
            3.  Diday, E. (1973). The dynamic clusters method in nonhierarchical
                 clustering. International Journal of Computer and Information Sciences
                 2, 61-88.
            4.  Diday, E. (1987). Introduction a l’approche symbolique en analyse des
                 donnees. Premier Jouneles Symbolique-Numerique, CEREMADE,
                 Universite Paris - Dauphine, 21-56.
            5.  Diday E. and Simon, J. C. (1976). Clustering analysis. In: Digital Pattern
                 Recognition (ed. K. S. Fu). Springer, Berlin, 47-94.
            6.  Liu, F. (2016). Cluster analysis for symbolic interval data using linear
                 regression method. Doctoral Dissertation, University of Georgia.














                                                               200 | I S I   W S C   2 0 1 9
   206   207   208   209   210   211   212   213   214   215   216