Page 154 - Contributed Paper Session (CPS) - Volume 1
P. 154

CPS1216 Teppei O.
                                                                                ⁄
                                                           ⁄
                             (, , ) = log det  (, ) −   1 2 −1  −1 2 ),
                                                            ℓ  ((()())
                                               
                                                             
                             
                           ( ,  , , , ) =  ( ,  , , , ) +  ( ,  , , ).
                        
                                                                 2
                                                              1
                                                          
                              2
                           1
                                         
                                            1
                                               2

                         ̃
                               ̃
                                                       ̃
                                                                                  ̃
                      Let ∑ = ∑ () = ∑( −1 ,   −1 , ), ∑ ,†  = ∑  −1 ,†  and  ̃ ,†  =  (∑ ,† ,  ). We
                                                                               
                                                                                       ∗
                                
                           
                  denote
                                           1
                                                                            
                                                                        ̃ ̃
                         △ = ( ,  ):= − ∑ tr (( ̃ −1 ( ) −  ̃ −1 ( )) (  −  ̃ ,† ))
                                    2
                                 1
                           
                                                         1
                                                                          
                                                                   2
                                                     
                                                               
                                           2
                                             
                         for  ,  ∈ clos ().
                              1
                                 2

                  Proposition 3.1. Assume [B1], [B2] and [V]. Let { } = 1,2,  ∈ ℕ be clos(Λ)-
                                                                  , 
                  valued random variables. Then
                            ⁄
                          −1 4  (  ( 1, , ̂  )−  ( 2, , ̂  ))
                          
                                                             ⁄
                                            ⁄
                                        =   −1 4  △  ( 1, ,  2, ) −   1 4  ((∑( 1, ), ∑ † ) − (∑( 2, ), ∑ † ))
                                                2
                                         1  −1 4
                                             ⁄
                                                      
                                        +    ∑(−1) ∑   (̃  −1 , ∑ ̃ ( , ) , ∑ ̃ ,† ,  ∗ ) +   (1).      (3.4)
                                                                  
                                         2
                                               =1    

                      The third term in the right-hand side of (3.4) is bias term which does not
                  appear in the specified model. Due to the third term, we cannot ensure that
                     ⁄
                   −1 4    ) is   (1).
                     (̂  −  ∗
                      In  the  following,  we  consider  removing  the  bias.  First,  we  consider  an
                  estimator ( , ) of ∑  −1 ,†  by using the function g appearing in Jacod et al.
                  [2],  that  is,  ∶ [0,1] → ℝ is  continuous,  piecewise  , (0) = (1) = 0, and
                                                                      1
                                                                  1
                   1
                                                                                   1
                  ∫ () > 0.  Let   = ( ( + 1)), Ψ = ∫ () , Ψ = ∫  () .
                                                   
                                        
                                                                                         2
                                                                                     ′
                                                                       2
                                               ⁄
                                                                             1
                                                   
                                                             1
                                        
                   0
                                                                 0
                                                                                  0
                  For example, let () = ⋀(1 − ) on0 ≤  ≤ 1, then Ψ = 1 12 and Ψ = 1.
                                                                             ⁄
                                                                        1
                                                                                       2
                                     
                                         
                              1
                                                          −1
                                               
                  Let  ̂   = (̂ , ⋯ , ̂ ), ̂   =  ̂ −1 ( ) 1 { ̂ , >0} ,  and  let   ,  be  a   × 
                                                        
                              
                                                ,
                                     
                  matrix satisfying.
                                                        
                                                      
                                      ℓ                                ̂
                                       
                                                               
                                                  
                           [ , ] =  ΤΨ  {(∑    ) (∑   , ) −  , Ψ 1 {=} }.
                                                  ,
                                                                            2
                                                             
                                                                        
                                 
                                        1
                                            =1         =1           
                      Then we define a bias-corrected quasi-likelihood function  () by
                                                                              ̌
                                                                               
                                                   1
                                ̌
                                () =  (, ̂ ) + ∑  (̂ , ∑ (),  , , ̂ ).
                                 
                                         
                                                                 
                                               
                                                          
                                                                             
                                                             
                                                   2
                                                                         ⁄
                                               ⁄
                                            
                                                                        
                      By setting  ̂ ,,† = ((̂  ̂ ) 1 2 [ , ] ) and  ̂ , = ((̂  ̂ ) 1 2  ()] ) ,  ̌ ()
                                          
                                                                      
                                            
                                                                   [∑       
                  is simplified as
                                       1
                                                      
                                             −1
                           ̌ () = − ∑ {  (   ()(  −  , ))
                           
                                                     
                                       2
                                    
                                          √   ⁄
                                                                              ⁄
                                        +    ℓ −1 2  (( ̂ , () +  ̂ , , †) ̂ , () −1 2 )}.              (3.5)
                                              
                                           4
                      Let ̌ = argmax  ̌ (). Then we obtain optimal rate convergence for ̌ .
                          
                                     
                                                                                      
                                        

                                                                     143 | I S I   W S C   2 0 1 9
   149   150   151   152   153   154   155   156   157   158   159