Page 154 - Contributed Paper Session (CPS) - Volume 1
P. 154
CPS1216 Teppei O.
⁄
⁄
(, , ) = log det (, ) − 1 2 −1 −1 2 ),
ℓ ((()())
( , , , , ) = ( , , , , ) + ( , , , ).
2
1
2
1
1
2
̃
̃
̃
̃
Let ∑ = ∑ () = ∑( −1 , −1 , ), ∑ ,† = ∑ −1 ,† and ̃ ,† = (∑ ,† , ). We
∗
denote
1
̃ ̃
△ = ( , ):= − ∑ tr (( ̃ −1 ( ) − ̃ −1 ( )) ( − ̃ ,† ))
2
1
1
2
2
for , ∈ clos ().
1
2
Proposition 3.1. Assume [B1], [B2] and [V]. Let { } = 1,2, ∈ ℕ be clos(Λ)-
,
valued random variables. Then
⁄
−1 4 ( ( 1, , ̂ )− ( 2, , ̂ ))
⁄
⁄
= −1 4 △ ( 1, , 2, ) − 1 4 ((∑( 1, ), ∑ † ) − (∑( 2, ), ∑ † ))
2
1 −1 4
⁄
+ ∑(−1) ∑ (̃ −1 , ∑ ̃ ( , ) , ∑ ̃ ,† , ∗ ) + (1). (3.4)
2
=1
The third term in the right-hand side of (3.4) is bias term which does not
appear in the specified model. Due to the third term, we cannot ensure that
⁄
−1 4 ) is (1).
(̂ − ∗
In the following, we consider removing the bias. First, we consider an
estimator ( , ) of ∑ −1 ,† by using the function g appearing in Jacod et al.
[2], that is, ∶ [0,1] → ℝ is continuous, piecewise , (0) = (1) = 0, and
1
1
1
1
∫ () > 0. Let = ( ( + 1)), Ψ = ∫ () , Ψ = ∫ () .
2
′
2
⁄
1
1
0
0
0
For example, let () = ⋀(1 − ) on0 ≤ ≤ 1, then Ψ = 1 12 and Ψ = 1.
⁄
1
2
1
−1
Let ̂ = (̂ , ⋯ , ̂ ), ̂ = ̂ −1 ( ) 1 { ̂ , >0} , and let , be a ×
,
matrix satisfying.
ℓ ̂
[ , ] = ΤΨ {(∑ ) (∑ , ) − , Ψ 1 {=} }.
,
2
1
=1 =1
Then we define a bias-corrected quasi-likelihood function () by
̌
1
̌
() = (, ̂ ) + ∑ (̂ , ∑ (), , , ̂ ).
2
⁄
⁄
By setting ̂ ,,† = ((̂ ̂ ) 1 2 [ , ] ) and ̂ , = ((̂ ̂ ) 1 2 ()] ) , ̌ ()
[∑
is simplified as
1
−1
̌ () = − ∑ { ( ()( − , ))
2
√ ⁄
⁄
+ ℓ −1 2 (( ̂ , () + ̂ , , †) ̂ , () −1 2 )}. (3.5)
4
Let ̌ = argmax ̌ (). Then we obtain optimal rate convergence for ̌ .
143 | I S I W S C 2 0 1 9