Page 155 - Contributed Paper Session (CPS) - Volume 1
P. 155

CPS1216 Teppei O.
                                                                       ⁄
            Theorem  3.2.  Assume  [B1],  [B2]  and  [V].Then  {b     1 4  ((∑(̌ ), ∑ ) −
                                                                                   †
                                                                               
                                                                      
            min (∑(), ∑ ))}   is tight.
                
                          †
                             ℕ

            References
            1.  R. A. Adams and J. J. F. Fournier. Sobolev spaces, volume 140 of Pure and
                Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam,
                second edition, 2003.
            2.  J. Jacod, Y. Li, P. A. Mykland, M. Podolskij, and M. Vetter. Microstructure
                noise in the continuous case: the pre-averaging approach. Stochastic
                Process. Appl., 119(7):2249{2276, 2009.
            3.  T. Ogihara. Parametric inference for nonsynchronously observed diffusion
                processes in the presence of market microstructure noise. Bernoulli,
                24(4B):3318{3383, 2018.
            4.  T. Ogihara and N. Yoshida. Quasi-likelihood analysis for
                nonsynchronously observed diffusion processes. Stochastic Process.
                Appl., 124(9):2954{3008, 2014.
            5.  M. Uchida and N. Yoshida. Estimation for misspeci_ed ergodic diffusion
                processes from discrete observations. ESAIM Probab. Stat., 15:270{290,
                2011.









































                                                               144 | I S I   W S C   2 0 1 9
   150   151   152   153   154   155   156   157   158   159   160