Page 155 - Contributed Paper Session (CPS) - Volume 1
P. 155
CPS1216 Teppei O.
⁄
Theorem 3.2. Assume [B1], [B2] and [V].Then {b 1 4 ((∑(̌ ), ∑ ) −
†
min (∑(), ∑ ))} is tight.
†
ℕ
References
1. R. A. Adams and J. J. F. Fournier. Sobolev spaces, volume 140 of Pure and
Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam,
second edition, 2003.
2. J. Jacod, Y. Li, P. A. Mykland, M. Podolskij, and M. Vetter. Microstructure
noise in the continuous case: the pre-averaging approach. Stochastic
Process. Appl., 119(7):2249{2276, 2009.
3. T. Ogihara. Parametric inference for nonsynchronously observed diffusion
processes in the presence of market microstructure noise. Bernoulli,
24(4B):3318{3383, 2018.
4. T. Ogihara and N. Yoshida. Quasi-likelihood analysis for
nonsynchronously observed diffusion processes. Stochastic Process.
Appl., 124(9):2954{3008, 2014.
5. M. Uchida and N. Yoshida. Estimation for misspeci_ed ergodic diffusion
processes from discrete observations. ESAIM Probab. Stat., 15:270{290,
2011.
144 | I S I W S C 2 0 1 9