Page 147 - Special Topic Session (STS) - Volume 2
P. 147

STS474 Takaki S. et al.
            spatial analysis for financial data. Therefore, another spatial weight matrix can
            be more interesting to improve our volatility analysis. Another challenge is to
            establish asymptotic properties of estimators for the SARMA-GARCH
            model to investigate theoretical properties of proposed estimators.

            References
            1.  Alexander, C. (2001). Market models: A guide to financial data analysis.
                John Wiley & Sons.
            2.  Bollerslev, T. (1986). Generalized autoregressive conditional
                heteroskedasticity. Journal of econometrics, 31(3), 307-327.
            3.  Bollerslev, T. (1990). Modelling the coherence in short-run nominal
                exchange rates: a multivariate generalized ARCH model. The review of
                economics and statistics, 498-505.
            4.  Borovkova, S. & Lopuhaa, R., (2012). Spatial GARCH: A Spatial Approach
                to Multivariate Volatility Modeling. Available at SSRN:
                https://ssrn.com/abstract=2176781.
            5.  Caporin, M., & Paruolo, P., 2008, Structured multivariate volatility models,
                Available at SSRN: http://ssrn.com/abstract=1318639.
            6.  Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with
                estimates of the variance of United Kingdom inflation. Econometrica:
                Journal of the Econometric Society, 987-1007.
            7.  Engle, R. F., & Bollerslev, T. (1986). Modelling the persistence of
                conditional variances. Econometric reviews, 5(1), 1-50.
            8.  Engle, R. F., & Kroner, K. F. (1995). Multivariate simultaneous generalized
                ARCH. Econometric theory, 11(1), 122-150.
            9.  Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation
                between the expected value and the volatility of the nominal excess
                return on stocks. The journal of finance, 48(5), 1779-1801.
            10. Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A
                new approach. Econometrica: Journal of the Econometric Society, 347-
                370.
            11. Robinson, P. M. (2009). Large sample inference on spatial dependence.
                The Econometrics Journal, 12(s1).
            12. Sato, T. & Matsuda, Y. (2017). Spatial Autoregressive Conditional
                Heteroskedasticity Models. J.Japan Statist. Soc., Vol. 47, 2
            13.  Tse, Y. K., & Tsui, A. K. C. (2002). A multivariate generalized
                autoregressive conditional heteroscedasticity model with time-varying
                correlations. Journal of Business & Economic Statistics, 20(3), 351-362.
            14. Yan, J. (2007). Spatial stochastic volatility for lattice data. Journal of
                agricultural, biological, and environmental statistics, 12(1), 25.





                                                               136 | I S I   W S C   2 0 1 9
   142   143   144   145   146   147   148   149   150   151   152