Page 147 - Special Topic Session (STS) - Volume 2
P. 147
STS474 Takaki S. et al.
spatial analysis for financial data. Therefore, another spatial weight matrix can
be more interesting to improve our volatility analysis. Another challenge is to
establish asymptotic properties of estimators for the SARMA-GARCH
model to investigate theoretical properties of proposed estimators.
References
1. Alexander, C. (2001). Market models: A guide to financial data analysis.
John Wiley & Sons.
2. Bollerslev, T. (1986). Generalized autoregressive conditional
heteroskedasticity. Journal of econometrics, 31(3), 307-327.
3. Bollerslev, T. (1990). Modelling the coherence in short-run nominal
exchange rates: a multivariate generalized ARCH model. The review of
economics and statistics, 498-505.
4. Borovkova, S. & Lopuhaa, R., (2012). Spatial GARCH: A Spatial Approach
to Multivariate Volatility Modeling. Available at SSRN:
https://ssrn.com/abstract=2176781.
5. Caporin, M., & Paruolo, P., 2008, Structured multivariate volatility models,
Available at SSRN: http://ssrn.com/abstract=1318639.
6. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with
estimates of the variance of United Kingdom inflation. Econometrica:
Journal of the Econometric Society, 987-1007.
7. Engle, R. F., & Bollerslev, T. (1986). Modelling the persistence of
conditional variances. Econometric reviews, 5(1), 1-50.
8. Engle, R. F., & Kroner, K. F. (1995). Multivariate simultaneous generalized
ARCH. Econometric theory, 11(1), 122-150.
9. Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation
between the expected value and the volatility of the nominal excess
return on stocks. The journal of finance, 48(5), 1779-1801.
10. Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A
new approach. Econometrica: Journal of the Econometric Society, 347-
370.
11. Robinson, P. M. (2009). Large sample inference on spatial dependence.
The Econometrics Journal, 12(s1).
12. Sato, T. & Matsuda, Y. (2017). Spatial Autoregressive Conditional
Heteroskedasticity Models. J.Japan Statist. Soc., Vol. 47, 2
13. Tse, Y. K., & Tsui, A. K. C. (2002). A multivariate generalized
autoregressive conditional heteroscedasticity model with time-varying
correlations. Journal of Business & Economic Statistics, 20(3), 351-362.
14. Yan, J. (2007). Spatial stochastic volatility for lattice data. Journal of
agricultural, biological, and environmental statistics, 12(1), 25.
136 | I S I W S C 2 0 1 9