Page 29 - Contributed Paper Session (CPS) - Volume 2
P. 29
CPS1408 Caston S. et al.
price forecasting. International Journal of Forecasting. 2016, 32, 1038-
1050. https://doi.org/10.1016/j.ijforecast.2015.12.001
5. Goude, Y.; Nedellec, R.; Kong, N. Local short and middle term electricity
load forecasting with semi-parametric additive models. IEEE Transactions
on Smart Grid. 2014, 5(1), 440-446. https:
//doi.org/10.1109/TSG.2013.2278425
6. Hong, T.; Pinson, P.; Fan, S.; Zareipour, H.; Troccoli, A.; Hyndman, R.J.
Probabilistic energy forecasting: Global Energy Forecasting Competition
2014 and beyond. International Journal of Forecasting. 2016, 32(3), 896-
913.
7. Laouafi, A.; Mordjaoui, M.; Haddad, S.; Boukelia, T.E.; Ganouche, A. Online
electricity demand forecasting based on effective forecast combination
methodology. Electric Power Systems Research. 2017, 148, 35-47.
8. Laurinec, P. Doing magic and analyzing seasonal time series with GAM,
(Generalized Additive Model) in R. 2017. Available online:
https://petolau.github.io/Analyzing-double-seasonal-timeseries-with-
GAM-in-R/ (Accessed on 23 February 2017).
9. Lim, M.; Hastie, T. Learning interactions via hierarchical group-lasso
regularization. J. Comput Graph Stat. 2015, 24(3), 627-654.
https://doi.org/10.1080/10618600.2014.938812
10. Liu, B.; Nowotarski, J.; Hong, T.; Weron, R. Probabilistic load forecasting via
quantile regression averaging of sister forecasts. IEEE Transactions on
Smart Grid. 2017, 8(2), 730-737.
11. Zhang, X.; Wang, J.; Zhang, K. Short-term electric load forecasting based
on singular spectrum analysis and support vector machine optimized by
Cuckoo search algorithm. Electric Power Systems Research. 2017, 146,
270-285.
18 | I S I W S C 2 0 1 9